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Abstract 

The study of population dynamics with special emphasis on migration (i.e., diffusion) in a food chain ecosystem is an 

important area of research in the field of mathematical biology dealing with survival of different populations. 

Keeping in view of the above, we have formulated and analyzed a realistic food chain mathematical model in this 

paper. 
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Introduction 

It is one of the important issues in ecology to 

identify some general properties about the 

structure of food web. It has been theoretically 

studied by not a few researchers (for instance, see 

Jordan et al. ([1] and its references). The length of 

food chain is one of the important features 

interesting for such theoretical studies. One 

method to estimate the length of food chain is to 

deal with the energy. It represents how many 

times the energy (or a certain material) is 

transferred from a primary producer to a 

consumer. The average number of links from each 

producer to each top predator is regarded as the 

length of food chain. Although the network of 

energy in a food web is in general rather complex, 

it could be theoretically simplified to a linear 

chain of energy. Using the method discussed by  

Higashi et al. [2]. Along their theory, we could 

resolve and reconstruct the network of energy into 

a linear chain for a food web. Teramoto [3] 

analyzed a system of differential equations for a 

food chain, taking account of the energy reserve of 

each trophic level. He obtained the following 

results: (a) The equilibrium with every trophic 

level of positive energy reserve is globally stable; 

(b) The finite upper limit for the number of 

trophic levels exists; (c) It has a positive 

correlation for the efficiency of energy reservation 

and the intrinsic growth rate of the first trophic 

level; (d) In the chain consisting of trophic levels 

as many as possible, the distribution of energy 

reserves among trophic levels is always such that 

the lower trophic level has greater energy reserve 

than the higher has, in other words, it has a 

pyramid shape; (e) When the intra-trophic density 

effect is sufficiently large, at the equilibrium with 

a pyramid shape of energy distribution, the 

pyramid shape could be maintained even if the 

top tropic level is removed.  

Preliminaries 

Concepts of Growth Rates 

Since population is changing entity. We are 

interested not only in its size and composition but 

also in nature of its change. As varying from place 

to place population density also varies in time. 

Population may remain constant they may 

fluctuate or they may steadily increases or 

decreases. Such changes are the main focus of 

population ecology. It is customary to abbreviate 

the change in something by writing the symbol 

),(Delta if N represents the number of organisms 

and t the time then  

N  = The change in number of organisms. 

t

N




  =The average rate of change in the number 

of organisms per unit time  

N

1

t

N




 = The average rate of change in the 

number of organisms per unit time per Organisms                                                 

(The is often called specific growth rate) 

If specific growth rate multiplied by 100, i.e.,

100
1






t

N

N
, it becomes the percent growth rate. 
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The Fundamental Equation for Population 

Growth 

The study of population dynamics is called 

demography. The basic aim of any demographic 

study is to quantify the changes, is a population 

by finding out the number of birth, deaths 

immigrants and emigrants. The changes in 

population size over a given time can be 

calculated by adding births and immigration to 

the original population number at time t( t )  and 

subtracting the number of deaths and emigrants 

to give a new population size at time  t+1, ( 1 t ) . 

The sum is often represented by the equation: 

EDIBNN tt 1
 (1.1) 

Where  

tN  Is the original population at time t. 

1tN   Is a new population at time t+1. 

B   = Births 

D = Deaths  

I = Immigration 

E = Emigration. 

 

When immigration and emigration play no 

significant role, then equation (1.1) reduced to  

1 t  = Dt                                      (1.2) 

Continuous Growth Model for Population 

Fundamental equation (Murray, 1990) for the 

change in population: 

EIDB
t





 

Where     

  =    change in population  

t  =      time interval  

I   =       Rate of immigration 

E =       Rate of emigration  

B =      Birth 

D =      Death 

The Logistic Population Model 

We know that by “simplest model” 

)()( NDNB
dt

d



                                    (1.3) 

Where 

 

 b)(  

 dD )(  

Hence,  
dt

d
  =   db   

Where d, b are constant.  

Verhulst in 1836 proposed that a self limiting 

process when a population becomes too large. 

Suppose  

2)(  CdD   

 Here, d  = Natural death 

In that case by equation 

2CNdNbN
dt

dN
  

2)( CNNdb
dt

d



 

2CNrN
dt

d



  

dbHere   

Modify this model is given by  

dt

d
 = )1(

k
r


  

This model is called a logistic model. 

Mathematical Preliminaries 

Consider the mathematical model which is given 

by the following set of Non-autonomous 

differential equations. 

dt

dx
= F(x, t)                                                    (1.4) 

 Where X = (X1, X2 ,……Xn) 

The function F(x, t) is a non-linear function of X1, 

X2, ……Xn, and takes into account various factors 

governing the system. 

Equilibrium Point  

 The system (1.4) is said to have an equilibrium 

point at X=X 0, if          

 

dx

dt
 = 0  

at this point. This point is obtained by putting f(x) 

= 0 and is also called stationary point. 
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Stability and Instability 

When a system governed by a mathematical 

equation such as (1.4) is disturbed from its 

equilibrium state or point by some mechanism 

and if it returns to it as time passes then the 

system is said to be stable.  Under that kind of 

perturbation if the system is not stable then it is 

called unstable. 

Mathematical Definitions of Stability 

The mathematical models that describe physical 

phenomena are in most cases,   ordinary 

differential equations of the form. 

X’=F(x, t)   (X’=
dt

dx
)                    (1.5) 

with initial data x (t0) =x0. 

Definition of Stability 

 We define the concepts of stability for the 

solution X (t, t0, x0) of (1.5) and by stability we 

mean stability over an interval ).,( 0 t  

Definition  

The solution x (t) of (1.5) is said to be stable if for 

each  0, there exist a   0  , such that 

for any solution x (t) = x (t0, x0) of the inequality 

00 XX  <    implies   )()( tXtX  <   for all t 

> 0. 

Definition  

The solution x (t) of (1.5) is called asymptotically 

stable if it is stable and if there exist a  0 > 0 such 

that  00 XX 0    implies that  

)()( tXtX    0    as t   

The Variational Equation 

Consider an autonomous system of differential 

equation 

X’= F(x)          (x’ =
dt

dx
)                                  (1.6) 

And let Ө (t) be a solution of this system i.e. 

 Ө’ (t) =F (ө (t)) 

then variation equation of system (1.6) with 

respect to ө(t)  

is the linear part of expansion of system (1.6). It is 

formally given by the linear system  

  YtFY x                                                  (1.7) 

 

Where the variational matrix Fx (ө(t)) is the 

matrix whose i-i th component is (  tat
X

F

i

i 



). 

To decide about the negativity of the real part of 

the Eigen value the following theorem is used. 

Theorem 1: If there exists a positive definite 

scalar function V(x) such that   0 xV , on S , 

then the zero solution of (1.9) is stable. 

Theorem 2: If there exists a positive definite 

scalar function V(x) such that  xV   is negative 

definite on S , then the zero solution of (1.9) is 

asymptotically stable. 

Theorem 3: If there exists a scalar function V(x) 

= 0, such that  xV   is positive definite on  S  and 

if in every neighbourhood N of the origin, SN  , 

there is point 0x , where   00 xV , then the zero 

solution of (1.9) is a unstable. 

Now, let   be an open set in 
nR  containing the 

origin. Suppose V(x) is a scalar continuous 

function defined on . 

The scalar function or liapunov function V(x) can 

be classified as follows. 

Positive Definite Function 

A scalar function V(x) is said to be positive 

definite on the set   if and only if V (0) = 0 and 

V(x)>0 for x  0 and x . 

Negative Definite Function 

A scalar function V(x) is said to be negative 

definite on the set   if and only if   –V(x) is 

positive definite in  . 

Positive Semi-definite Function 

A scalar function V(x) is called positive semi- 

definite on the set   when V is positive 

throughout   except at certain points or when it 

is zero. 

 Negative Semi-definite Function 

The Basic Mathematical Model    

Let us consider a simple food chain by taking one 

prey and two classes of predator population. We 

assume that in absence of first class predator, 

prey population grows logistically with constant 

growth rate and fixed carrying capacity. Further 

the first class predator and second class predator  
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wholly dependent upon prey and first class 

predator respectively. Keeping in view of the 

above, we propose a mathematical model of the 

food chain model by the system of differential 

equations A scalar function V(x) is called negative 

semi-definite on the set   if –V(x) is positive sign 

throughout   expect at certain points or where it 

is zero. 

(2.3) ----------                          

(2.2) ----------                           

(2.1) ----------                                     1

22212
2

2121111
1

11














 










dt

d

dt

d

k
r

dt

d

 

Where, 

N1 = First predator population density at time t 

N2 = Second predator population density at time t 

 r   = Intrinsic growth rate prey 

P = Prey density at time t. 

 K = Caring capacity rate. 

 1  Depletion of prey population due to first 

predator 

2 Depletion rate of first predator in the 

presence of second                                       

predator           

 1 Conversion rate of first predator due to prey 

   2 Conversion rate of second predator in the 

presence of first predator 

1 Natural death rate of first predator 

 2 Natural death rate of second predator 

All the constants r, P, k, α1, α2, β1, β2, γ1, γ2, N1, N2, 

are positive. With initial conditions:  P (0) = P0>0,   

N1 (0) = N10>0 and N2 (0) =N20>0. 

Equilibrium Points and Stability 

Analysis 

The model has three possible equilibrium points, 

which are given by, 

  E0: (P*=0, N1
*=0, N2

*=0) 

  E1: (P*=K, N1
*=0, N2

*=0) 





























 1

2

211

2

*

2

2

2*

1

2

21*

2

1
,,( 












r

r

k
r

r

k
E

The general community matrix of the model is  

      



























21222

22221111

111

0

0
2





 p
k

rp
r

The variation matrices about the equilibrium E0, 

E1, and E2 which be denoted by A0, A1 and A2, 

respectively are given by 

A0 = 





















2

1

00

00

00





r
 

A1= 























2

11

1

00

00

0







k

kr

 

A2 = 

 





































00

0

0
2

11

2

2

2

22

2

21

1

2

11



















P

P
k

rP
r

 

The characteristic equation corresponding to A0, 

A1 and A2 are respectively 

 (r-λ) (-γ1-λ) (-γ2-λ)  = 0                          --------- (2.4) 

(-r-λ) (β1 k- γ1-λ) (-γ2-λ)  = 0           ---------      (2.5) 

 )
2

(
2

1123




 



K

rP
r














2

211
112 )(






P
P     

0
2

2
2

2

1

2

21

2

21
12

2

12

21
12

2

21
2





































K

rP
Pr

P

K
rP

r  

(2.6) 

From characteristic equation (2.4), we get two 

negative roots   and one positive root given by  

21,,   r  

Thus E0 is stable in 2-dimensional and 1-

dimensional unstable equilibrium point. 

From characteristic equation (2.5), we get two 

roots are negative one root is positive, given by  

)(,, 112   kr  
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Thus E1 is a 2-dimensional stable and 1-

dimensional unstable if  

1111 if   kstableandk . 

From characteristic equation (2.6), we get roots 

are given by now the equation (2.6): 

032

2

1

3  aaa   

Where,                

a1 = -(r-
k

rP2
)

2

11




  














2

211
1122 )(






P
Pa  














2

211

2

2
2113

2
)(










rP
rPa  

 

From the existence of interior equilibrium point 

now from the Routh-Hurwitz criterion, the 

necessary and sufficient condition for the above 

system to be stable around the interior 

equilibrium point is that 

1. 01 a  

2. 02 a  

3. 03 a  

4. 0321  aaa  

Now   321 aaa   












 r

K

rP
P

2

21

2

121 2








 

The system is locally stable around 2E  if 

 

0
2

2

21
1 



r
K

rP
a




 

2

21




 r  

Again if 01 a , then 321 aaa  is always strictly 

positive Hence condition (4) is automatically 

satisfied. 

Again 03 a only when 
121

2121








K

K
r  and if 

03 a then 2a is always strictly positive. 

 Hence the system is stable around only when 












121

2121

2

21 ,max








K

K
r . 

 

The Proposed Mathematical Model 

Now introducing the movement in both the 

predator populations with constant diffusion rate. 

Let 1D  and 2D  are diffusion coefficients 

respectively for first and second class predator. 

Then the model equations become: 

111 PN
k

P
rP

t

P














                                 (2.7) 

2

1

2

12121111

1

x

N
DNNNPN

t

N









                  (2.8) 

2

2

2

222212

2

x

N
DNNN

t

N









                  (2.9) 

Where Lx 0 ,  

With the initial conditions 

)(),0(),(),0(),(),0( 2211 xNxNxNxNxPxP        (2.10) 

and no-flux boundary conditions  

0
),(),0(











x

tLP

x

tP
,                                   (2.11)

0
),(),0( 11 










x

tLN

x

tN

                                
(2.12) 

0
),(),0( 22 










x

tLN

x

tN
.                          (2.13) 

Where,  

1N First predator population density at time t 

and at the location x 

2N Second predator population density at time t 

and at the location x 

P Prey density at time t and at the location x 

r Intrinsic growth rate 

k Carrying capacity rate 

1 Depletion of prey population due to first 

predator 

2 Depletion rate of first predator in presence 

of second predator 

1 Conversion rate of first predator due to prey 

2 Conversion rate of second predator in 

presence of first predator 

1 Natural death rate of first predator 

2 Natural death rate of second predator 

1D Diffusion coefficient of first predator 

2D Diffusion coefficient of second predator 
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All the constants 

2121212121 ,,,,,,,,,,,, DDNNkPr   are 

positive. 

Stability Analysis of the Intrisic 

Equilibrium 

The above system has an interior equilibrium, 

namely,   
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Now using the perturbations  
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tNNN  
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Where stt NNP ,,  are very small. 

 

Using the perturbation in above equation and 

neglecting higher power terms we get 
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The (2.16) condition is automatic. 

Hence the system is stable around E if the 

condition (2.14) & (2.15) are satisfied .further it is 

clear from the condition (2.14) & (2.15) that in 

presence of the diffusion (i.e. the diffusion 

coefficient D 1 & D 2 ) the system become more 

stable. Therefore diffusion process increases 

stability of the system. 

Numerical Solutions 

In this section the numerical solutions of the 

system (2.1)-(2.3) shown in figure-1(a)-(b), Figure-

2 and Figure-3 with different set of parameters, 

using Mat Lab software. From the figure it was 

observed that the conversion rate of the second 

class predator is very sensitive [4-16].  
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Fig. 1(a)-(b):  The population trajectories, when 

,05.0,15.0,20,2.0 11  Kr

2221 ,1.0,2.0,02.0   =0.12 

Fig. 2:The population trajectories, when 

,05.0,15.0,20,2.0 11  Kr

2221 ,8.0,2.0,02.0   =0.12 

Fig. 3:The population trajectories, when 

,05.0,15.0,20,2.0 11  Kr

2221 ,08.0,2.0,02.0   =0.12 
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