
 ISSN: 2278-3369
 International Journal of Advances in Management and Economics

Available online at: www.managementjournal.info

 RESEARCH ARTICLE

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 51

Understanding Traditional Systems Development Methodologies

Tefo Sekgweleo*

Polytechnic of Namibia, Department of Business Computing, Windhoek, Namibia

*Corresponding Author: Email: ts330ci@gmail.com

Abstract

Software development methodology plays a vital role in systems development life cycle. It is a framework that

guides the systems development team in achieving what the customer/user has requested. Decision making may

impact the systems development team positively or negatively. Hence, understanding strengths, limitations, how,

why and who can use the software methodology is imperative. It helps all the stakeholders involved in a systems

development team to make informed decision for a particular project. Hence, the software development

methodology is not a silver bullet for all the projects.

Keywords: Systems development methodology (SDLC), Information technology (IT), Systems development.

Introduction

There is a stage in life where a need arises within

the organisation to purchase or develop a system.

This need may require the organisation to

undergo through a system development life cycle

(SDLC) in order for it to increase productivity to

remain competitive. To achieve that, most

organisations have to make a decision to

developing a system or purchase a system.

Therefore, there are various systems development

methodologies that can be followed after making

that crucial decision because there are finances

involved.

Nelson and Teng [1] define SDLC as a guideline

and logical process used by system developers to

develop systems. According to Rob [2], SDLC

stipulates the required ways that comprises

various stages and activities to successfully

develop the system. However, it should be taken

into consideration that the methodology is not one

size fit all. The software development team has to

carefully select the appropriate methodology for a

particular project they are undertaking.

These methodologies serve as a framework to be

followed by a software development team. It can

also be used to ensure that the designed solution

meet the user requirements that supports

business strategic goals and objectives. The

SDLC can be either agile or traditional. However,

both methodologies are made up of various stages

namely analysis, design, development,

implementation and maintenance [3]. However,

the main purpose of this paper is to examine the

traditional methodologies and to understand why,

who and how they are used and also highlight the

limitations thereof.

Traditional Systems Development

The traditional systems development existed prior

to the agile systems development. These

methodologies include waterfall method, V-model,

Rational Unified Process and others [4].

According to Matkovic and Tumbas [5], these

methodologies are based on the systems

development principles that have served as a

foundation for the creation of the systems

development to date which can be either

sequential or iterative. Sequential approach

means that the methodology is made up of a

series of steps/stages that follow each other

sequential. The steps are dependent of each.

With the iterative approach, [6] posits that the

methodology divides the intended system into a

series of versions. After the implementation of

version1 the additional work is done on version 2

and the process continues until the completion of

the overall system. The emphasis of the

traditional development approach is to create

ample documentation which serves as a means for

communication and traceability of the design [7].

Documentation also plays a vital role in sharing

knowledge and keeping tacit knowledge within

the organisation. However, knowledge

management is of vigorous importance within

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 52

organisations [8]. Documentation serves as a

means of knowledge for newly recruits and any

organisational employee who may want to join the

systems development team.

There is a variety of traditional systems

development methodologies that can be adopted

within the organisation. They include waterfall,

Spiral, V-Model, Rational Unified Process (RUP)

and Rapid Application Development [9]. The

traditional methodology is the most commonly

used approach by organisations whereby software

development activities are completed

sequentially. The traditional methodologies are

briefly explained below.

Waterfall Model

The waterfall model (also referred to as systems

development life cycle) is the most popular of the

traditional models. This model was originally

proposed by Winston W. Royce in 1970 to define a

potential software engineering practice [10]. It is

made up of various stages and has distinct goals

for each stage of software development. Hedman

and Lind [11] argue that the waterfall model is a

process that describes and recommends the stages

that have to be completed in the process of

developing a system for a particular usage. It

consists of six stages including requirement

gathering, analysis, design, testing,

implementation, and maintenance [12].

Figure 1: Adopted from [10]

These stages are dependent on each other and

they follow each other sequentially. Pefkaros [13]

posits that each stage within the waterfall model

flows downward into each other. Each stage has

to be completed prior to the next stage could

commence [14]. One of the strengths of the

waterfall model is the extensive documentation of

requirements which is good for communication

among the systems development team [15].

However, the waterfall model does not allow

changes to be made to the previously completed

stage [16]. As a result, the system will have to be

implemented with missing/faulty requirements or

mistakes committed in any stage of system

development. Fixing such mistakes is not easy

but costly and it also leads to late delivery of the

requested system [15]. The user requirements

keep on changing throughout the system

development because the client does not usually

know what they exactly want. To fix mistakes or

gaps encountered in the business requirements

specification, change requests are often logged but

can only be attended to once the system has been

implemented.

Spiral Model

The spiral model was introduced by Barry W.

Boehm in 1988 [5]. It was introduced to solve the

limitations encountered in the waterfall model.

Boehm created the spiral model with the

intention of introducing iterative software

development. This model combines the features

of the prototyping and the waterfall model.The

spiral model consists of four stages starting with

the planning, objectives, risk analysis and

development [14].

The model arranges all the activities in the form

of a spiral. All the stages are continuously

repeated for a certain period of time until the

completion of the requested system [18]. The

emphasis of the spiral model is to evaluate risks,

which are used as a source for decision making to

further develop the system [5]. In each cycle,

problems that are encountered are resolved. The

next iteration occurs until the system completed

and meets the user requirements. A prototype is

built for every iteration.

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 53

 Figure 2: Adopted from [17]

Due to iterative pattern of the spiral development,

feedback given on each stage makes it possible to

fix errors at early stages, enhance requirements

and get rid of risks identified. According to Butt

and Hameet [18], problems encountered in every

iteration, are resolved quicker and possible risks

are removed earlier stages of systems

development. This approach makes it possible for

the organisations to safe costs since it is cheaper

to identify problems and risk in the early stages of

the systems development. This model also makes

it possible to enhance or make changes to the

requirements until the acceptable system is

delivered to the users.

The spiral development starts smaller and grows

bigger depending on the number of iterations.

However, lots of activities occur parallel and

make it difficult to manage the systems

development and rework is likely to occur since

requirements are not fully specified prior to

systems development [19]. Due to the fact that

requirements are not fully specified when the

development starts, additional work may be

required. The main reason for not specifying all

requirements at once is because users do not

normally know exactly what they want until the

system is delivered to them. Another setback of

the spiral model is that is works well for big

projects than small ones [17].

V-Model

The V-Model was first proposed by Paul Rook in

the late 1980s and can be thought as the

extension of the waterfall model [20]. It was

introduced was developed with the intention to

address some of the problems encountered in the

waterfall model. In the waterfall model defects

were found very late in the development life cycle

because testing was not involved as early as the

initial stage. The emphasis of the V-Model is

more on the testing of each stage of the

development life cycle. Balaji and Murugaiyan

[21], posits that the V-Model illustrates the link

between each stage of the systems development

life cycle relating to its software testing stage.

 Mushtaha and Tolba, [22] posits that the V-

Model is made up of four main stages of the

waterfall model with their equivalent testing

stages such as requirements analysis -

(acceptance testing), requirements specification-

(system testing), design specification -

(integration testing), program specification and

coding-(unit testing).The mentioned testing

activities should be carried out in parallel to the

development activities so that testers can produce

a set of test deliverables. However, the V-Model

outlines who is responsible for conducting a

particular testing at which stage [23]. Without

that kind of information it would be very difficult

to execute testing.

It is always a best practice to involve software

testers at earlier stages of the product life cycle.

The overlap of testing stage with the development

stage ensures that problems encountered are

addressed as early as possible [4]. Lee and Xia

[24] posits that the response from software teams

with regards to vital requirement changes in early

stages of systems development life cycle is critical

as it enables organisations to save time and cost

in later stages. However, the V-Model does not

indicate a clear path for problems encountered

during the testing stage [17].

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 54

Figure 3: Adopted from

Rapid Application Development

The need arose in the early nineties, to speed up

the systems development within organisations.

That is when James Martin in 1991, introduced

rapid application development (RAD) to rapidly

develop systems [9]. The main objective of RAD is

to develop systems faster and produce high

quality results compared to linear traditional

model. As a result, this enables organisations to

take leadership in implementing latest technology

systems quicker. In order to shorten the systems

development schedules it is imperative for the

team to identify the systems development

methodology, tools, techniques and technologies

suitable for the selected methodology [19].

RAD methodology makes use of Computer Aided

Software Engineering (CASE) tools in

combination with iterative development and rapid

prototyping in order to achieve quick systems.

Choo and Lee [25] posit that various products are

used in RAD including testing tools, groupware

for communication, requirements gathering tools,

CASE tools, prototyping tools and language

development environments such as Java and C++

environments. The advantage of using such tools

is that they can be reused within or in other

systems development projects. In order to achieve

the best results, the systems development team

should be dedicated and highly skilled in using

the above mentioned tools.

RAD follows the same stages used in the waterfall

model but it has added certain features to achieve

quick and better results. Some of the features of

RAD are outlined below:

Table 2: Adopted from (Avison and Fitzgerald, 2006)

RAD Features Definition

Incremental

Development

Requirements are never complete but evolves

Time Box Functions developed parallel into time boxed

cycle

Prototype Developed functions are assembled into a

working prototype

Pareto Principle 80/20 rule applied to requirements. 80% of the

functioning system can be delivered, 20% effort

required to complete 100% of the requirements

MoSCoW rules Must Haves, Should Haves, Could Haves, Won’t

Haves

JAD Sessions These meetings are used to beef up the

requirements and occur throughout time box

cycles

Sponsor and

Champion

The success of the system relies on a committed

sponsor and the champion of the system

Toolsets It helps to speed up the process and improve

productivity

Within RAD, clients are involved very early in the

systems development because they provide

feedback which helps to enhance requirements. A

prototype is developed and given to clients to use

in order to critique it and with that feedback a

proper system is developed. The system developed

in components/functions which occurs parallel in

time boxed cycles which are then integrated into a

working prototype. However, if the tools and

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 55

techniques mentioned above are not properly

managed then the systems development may not

be a success. The success of the system is

tremendously dependent on high technical skilled

developers [26].

Rational Unified Process (RUP)

Due to the dynamic nature of technology, new

methodologies keeps on being implemented to

improve limitations encountered to its

predecessors. According to Jain and

Chandrasekaran [9] in 2000, Kruchten introduced

rational unified process (RUP). It was introduced

to consider the need for accommodating change

and adaptability during the system development

process [26]. As a result RUP becomes extremely

flexible as it allows change to occur at any time at

any stage of systems development. RUP is made

up of four stages namely inception, elaboration,

construction and transition [27]. These stages are

executed sequentially and iteratively throughout

the systems development life cycle. Every stage of

RUP is composed of one or more iterations [28].

Any discrepancies, risks and errors encountered

in each stage are addressed in each iteration of

that particular stage. The final iteration forms

part of the final system.

Figure 4: Adopted from [29]

Table 2: Adopted from

Discipline Description

Business Modeling Describe the business process and the internal structure of the business in order to capture

proper requirements for the system to be built

Requirements Management Elicit, organise and document the requirements

Analysis and Design Create the architecture and design of the system

Implementation Write and debug the source code, conduct unit testing and build management

Test Conduct functional, integration, system and user acceptance testing

Deployment Packaging the software, creating in-stallation setups, compiling end user manuals and other

tasks needed to make the software available to its end users

Project Management Project planning and monitoring

Configuration and Change Management Covers all the tasks concerned about release management and change request management

Environment Adapt the RUP process according to the needs of the project and selecting the supporting

systems development tools.

The above mentioned stages are accompanied by

nine principles described in the table.

The aim of introducing new methodologies is to

fill up the gaps encountered in the previous

methodologies. RUP has been adopted in the

systems development industry as a model for the

reason that it is well defined and documented

[30]. The documentation is accessible

electronically. RUP is an adaptable model

allowing organisations to select elements of

processes that are most relevant to the particular

project. RUP make use of unified modelling

language (UML) to emphasise object-oriented

analysis and the maintenance model [31]. UML is

an industry-standard language that allows the

systems development team to clearly

communicate requirements, architectures and

designs visually [12]. Pictures or diagrams enable

the entire systems development team to visualise

the inner workings the system to be built. It also

makes it easier for the team to explain the how

the system is going to work.

The rational unified process (RUP) is a process

framework that provides a disciplined approach to

define activities and responsibilities inside the

organised system development [32]. The four

development stages are accompanied by the nine

basic principles. Hence each stage is iteratively

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 56

executed. The main goal of RUP is to make

changes manageable because problems

encountered in testing of each iteration are

resolved early in the systems development life

cycle [33]. RUP also ensure the production of

high-quality software that meets the needs of its

end-users, within a predictable schedule [12].

However, this model is too complex, not easy to

learn and problematic to apply correctly if project

managers or team members are not experts in

using it [33]. Another limitation is that RUP is a

commercial product and needs to be purchased

from IBM before it could be used [33].

Why is Traditional Methods Applied

Any organisation that needs to develop a system

may use the traditional systems development.

These methodologies consists of a sequence of

stages that must be followed and completed by

system designers and developers in order to

achieve some results and deliver the requested

system [10]. One thing that users must know is

that it takes time for the program to be complete.

It is built in such a way that the programmer

cannot move on to the next step if the step prior to

that is not yet completed. The traditional systems

development methods are dependent on a set of

prearranged processes and continuing

documentation which is written as the work

evolve to guide further development [4].

The traditional development attempts to

minimize change during system development

through severe upfront requirements gathering,

analysis and design with the intent to achieve

higher quality results under a controlled schedule

[34]. There are various specialists involved in

each and every stage of systems development.

Traditional methodologies, the development is

done by immense and organised teams with

specialists for some activities in the stages of

development. With traditional methods, systems

are fully specified, predicted and built through

careful and extensive planning [35].

How are Traditional Methods Used

The whole process of software development,

according to the traditional methods, begins with

the understanding of the requirements and

expectations from the customer or end user. After

the requirements are clearly understood by the

developers, analysis and design of the software

begins. The systems development undergoes

through a sequence of some fundamental stages

such as planning, analysis, design, and

implementation [2]. The activities of one stage

must be completed before moving to the next

stage. Amid all the stages the documents have to

pass a quality check, this approach is referred to

as a stage-gate model [36]. After the stage-gate

model, it is when the document is signed off and

the next stage begins.

The traditional methodologies endorse a strict

sequence of the quoted stages and it cannot be

violated. Hence, the processes have to be fully

defined and documented. Stages such as

requirements gathering and systems design, the

way they are performed in the traditional

methodologies helps the team members to broadly

gain knowledge about the entire system [37]. It is

vital for organisations to keep knowledge within

itself because the systems that are developed

require maintenance. Therefore, these documents

that are compiled and stored empower the

employees who later join the organisation to know

what the systems are all about hence they may be

the same people to maintain such systems.

Who Uses Traditional Methods

People who use the traditional methods are

known as IT professionals. Such professionals

include systems analyst, database analysts,

database administrators, network administrators,

webmasters, programmers, vendors, steering

committees and other IT professionals [38].

However, the structure of the company also

determines how the systems development team is

setup. The other IT professionals include project

manager, software development manager,

software architect, software developer, test

manager, test leader, test designer, software

tester, quality manager, quality assurance

engineer and quality control engineer [20].

Limitations and Challenges of

Traditional Development

Due to the formal/sequential pattern of the

traditional methodologies, users are expected to

give out requirements at the early stages of the

project. As a result users may give out incorrect

requirements or leave out critical requirements.

According to Mujumdar et al., [39], due to

uncertainties at the beginning of the project with

regards to the requirements the traditional

models are unable to accommodate such

uncertainties properly. These traditional

methods are not most suitable for the

development of projects whereby system

requirements change regularly, the development

schedules have to be shortened because that has a

negative impact on quality [40].

The traditional methodologies (also known as

plan-driven methodologies) assume that the

correct information can be obtained up front [41].

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 57

Humans are prone to committing errors since

there are uncertainties in developing systems.

Things cannot always be done correctly the first

time since we are humans. Another limitation of

the traditional methodologies is that customers

realises the problems of early stages very late

when they have to accept the system they

requested [36]. Therefore, any change requested

late in the development or after sign off of a

particular stage, requires additional cost.

Conclusion

Prior to systems development it is vital for the

systems development team to have a good

understanding of what is required by the

customer/user. It is crucial for the systems

development team to also understand the type of

project they are faced with before they could start

working on it. That enables the team to decide on

which system development methodology to follow.

The understanding of how each methodology is

applied by who, how and why is applied helps the

system development team to make informed

decision. The intention of most organisations

when it comes to systems development is to be

successful since IT enables them to be efficient

and remain competitive to its counterparts.

Failure is not an option to organisations and

success is what is expected from the systems

development team.

References

1. Nelson AC, Teng JTC (2000) Do systems development

methodologies and CASE tools decrease stress among

systems analysts? Behaviour & Information Technology,

19(4):307-313.

2. Rob MA (2006) Dilemma between the Structured and

Object-Oriented Approaches to System Analysis and

Design. Journal of Computer Information Systems.

3. Avison DE, Fitzgerald G (2003) Where Now for

Development Methodologies? Communication of the

ACM, 46(1):79-82.

4. Leau YB, Loo WK, Than WY, Tan SF (2012) Software

Development Life Cycle Agile vs Traditional Approaches.

International Conference on Information and Network

Technology.

5. Matkovic P, Tumbas P (2010) A Comparative Overview

of the Evolution of Software Development Models.

International Journal of Industrial Engineering and

Management, 1(4):163-172.

6. Ayman Al Ahmar M (2010) Rule Based Expert System for

Selecting Software Development Methodology. Journal of

Theoretical and Applied Information Technology.

7. Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges

of Migrating to Agile Methodologies. Communications of

the ACM, 48(5):73 -78.

8. Mishra, S. & Weistroffer, H. R. (2008). Issues with

Incorporating Regulatory Compliance into Agile

Development.

9. Jain R, Chandrasekaran A (2009) Rapid System

Development (RSD) Methodologies: Proposing a Selection

Framework. Engineering Management Journal, 21(4):30-

35.

10. Bassil Y (2012) A Simulation Model for the Waterfall

Software Development Life Cycle. International Journal

of Engineering & Technology, 2(5).

11. Hedman J, Lind M (2009) Is There Only One Systems

Development Life Cycle? Information Systems

Development: Challenges in Practice, Theory, and

Education, 1:105-115.

12. Jiang M, Jong CJ, Poppell P, Budhathoky, K, Hull R

(2009) System Infrastructure Development Life Cycle for

Enterprise Computing Systems.

13. Pefkaros K (2008) Using Object-Oriented analysis and

Design over Traditional Structured Analysis and Design.

International Journal of Business Research, 8(2):219-227.

14. Avison DE, Fitzgerald G (2006) Information Systems

Development Methodologies, Techniques & Tools. 4th Ed.

The McGraw-Hill Companies.

15. Nasution MFFA, Weistroffer HR (2009) Documentation

in Systems Development: A Significant Criterion for

Project Success. Paper presented at the Proceedings of the

42nd Hawaii International Conference on System

Sciences.

16. Seilheimer SD (2000) Information management during

systems development: a model for improvement in

productivity. International Journal of Information

Management, 20:287-295.

17. Munassar NMA, Govardhan A (2010) A Comparison

Between Five Models Of Software Engineering. IJCSI

International Journal of Computer Science Issues,

7(5):94-101.

18. Butt A, Hameed S (2011) Success of Spiral Model along

with its Development Techniques. Models and methods

applied in sciences.

Available Online at www.managementjournal.Info

Tefo Sekgweleo | May-June 2015 | Vol.4 | Issue 3 |51-58 58

19. Satzinger JW, Jackson RB, Burd SD (2004) Systems

Analysis and Design in a Changing World. 3rd ed. USA:

Thomson.

20. Mathur S, Malik S (2010) Advancements in the V-

Model. International Journal of Computer Applications,

1(12):29-34.

21. Balaji S, Murugaiyan, MS (2012) Waterfall vs V-Model

vs Agile: A Comparative Study on SDLC. International

Journal of Information Technology and Business

Management.

22. Mushtaha A, Tolba R (2008) Integrating V-Model Into

The Web Development Process. International Arab

Conference on e-Technology-IACET.

23. Skidmore S (2006) The V-Model developing systems.

Student Accountant.

24. Lee G, Xia W (2010) Toward Agile: An Integrated

Analysis of Quantitative and Qualitative Field Data on

Software Development Agility. MIS Quarterly, 34(1):87-

114.

25. Choo CH, Lee SP (2008) Towards Persistence

Framework-Based Rapid Application Development

Toolkit for Web Application Development. Journal of

Computer Science, 4(4):290-297.

26. Khan AI, Qurashi RJ, Khan UA (2011) A

Comprehensive Study of Commonly Practiced Heavy and

Light Weight Software Methodologies. IJCSI

International Journal of Computer Science Issues,

8(4:2):441-450.

27. Ge C (2010) Modifying RUP (Rational Unified Process) to

Comply with CMM (Capability Maturity Model) Levels

2&3. IEEE.

28. Manzoni LV, Price RT (2003) Identifying Extensions

Required by RUP (Rational Unified Process) to Comply

with CMM (Capability Maturity Model) Levels 2 and 3.

IEEE Transactions on Software engineering, 29(2):181-

192.

29. Guo F, Xia B, Xue F (2011) Analysis on Software

Processes and Enhancement for RUP.

30. Bergandy J (2008) Work in Progress - Software

Engineering Capstone Project with Rational Unified

Process. 38th ASEE/IEEE Frontiers in Education

Conference.

31. Wu X, Ge C (2010) The Research on Necessity and Plan

for Using Extreme Programming in Rational Unified

Process.

32. De Barros Paes CE, Hirata CM (2007) RUP Extension

for the Development of Secure Systems. International

Conference on Information Technology (ITNG'07).

33. Khan ME, Khan F (2012) A Comparative Study of White

Box, Black Box and Grey Box Testing Techniques.

(IJACSA) International Journal of Advanced Computer

Science and Applications, 3(6):12-15.

34. Vinekar V, Slinkman CW, Nerur S (2006) Can Agile and

Traditional Systems Development Approaches Coexist?

An Ambidextrous View. Information Systems

Management.

35. Dyba T, Dingsoyr T (2008) Empirical studies of agile

software development: A systematic review. Information

and Software Technology.

36. Petersen K, Wohlin C, Baca D (2009) The Waterfall

Model in Large-Scale Development. LNBIP, 32:386-400.

37. Uikey N, Susman U, Ramani AK, A Documented

Approach in Agile Software Development. International

Journal of Software Engineering (IJSE), 2(2):13-22.

38. Shelly GB, Cashman TJ, Vermaat ME (2004)

Discovering Computers 2004 A Gateway to Information

Web Enhanced. Thomson Course Technology.

39. Mujumdar A, Masiwal G, Chawan PM (2012) Analysis of

various Software Process Models. International Journal

of Engineering Research and Applications, 2(3):2015-

2021.

40. Carlo KM, Estevez E, Fillottrani P (2010) A

Quantitative Framework for the Evaluation of Agile

Methodologies. JCS&T, 10(2):68-73.

41. Marchesi M, Mannaro K (2008) Adopting Agile

ethodologies in Distributed Software Development.

